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Abstract: - This paper is devoted to the analytical solution of the space-time fractional heat conduction equation 

and associated thermoelasticity problem for a half-space in one-dimensional case. Finite Riesz fractional 

derivative and Caputo derivative are considered. Laplace transform with respect to time and sin-Fourier 

transform with respect to spatial coordinate are used. Numerical results are also presented. 
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1 Introduction 
Continuum mechanics is suited to consider 

the media with spatially uniform characteristics. 

If the materials are heterogeneous and 

nonregular, then transport processes do not 

obey the lows of classical mechanics. Particle 

and energy transport (diffusion process, thermal 

conduction), occurring in porous materials, 

amorphous semiconductors, percolation 

clusters, polymer films, are called as anomalous 

or fractional processes through its association 

with fractional calculus [1], [2], [3]. The most 

acceptable and simple mathematical apparatus 

for description of the anomalous diffusion (or 

anomalous heat conduction) is partial 

differential equations with space-time fractional 

derivatives. The order of time derivative is 

specified by the quantity α , which is 

characterized by set topology [4]. In [5], on the 

basis of the experimental analysis of the basic 

sediments, the values of the exponent α  are 

given in range 0,66 0,909α< < . The space 

fractional derivative enters into the transfer 

equation in case of replacing Gauss distribution 

of the classical Brownian motion with more 

general stable Levy distribution [6], [7]. 

In recent years increasing interest has been 

shown in initial-value problems for fractional 

differential equation (FDE). For instance, in the 

paper [8] Cauchy problem for multidimensional 

space-time FDE was considered. Weitzner and 

Zaslavsky [9] analyzed the kinetic equation 

with fractional Riesz derivative [10]. The 

solutions of the time-fractional diffusion 

equations with Caputo derivatives are presented 

in [11], [12], [13], [14], [15], [16]. The basic 

methods used in the above mentioned papers 

are integral transforms [17], variable separation 

method [12], numerical methods [6]. 

Fractional heat conduction equation 

appeared as generalization of the Fourier law 

and standard heat conduction equation. The 

time-nonlocal constitutive equation for the heat 

flux was considered in [18], [19]. 
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This equations and energy conservation law 

yield the time-fractional heat conduction 

equation [20], [21], [22], [23]. Space-nonlocal 

law for heat flux is also considered. It is used in 

anomalous heat conduction models [11]. 

Boundary value problems for the FDEs with 

space fractional Riesz and Riesz-Feller 
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derivatives are of particular interest [6], [24]. 

Adomian’s decomposition method was 

generalized for the solving of FDE with Caputo 

fractional derivatives by Momani [25]. 

Ciesielski and Leszczynski [6] developed a 

numerical approximation of Riesz-Feller 

fractional derivative. 

In the present paper we consider the one-

dimensional heat conduction equation with 

space and time fractional derivatives. The 

boundary value problem is solved using the 

Laplace integral transform and sin-Fourier 

transform. Also we study the corresponding 

quasi-static thermoelasticity problem for the 

half-space. 

 

 

2 Problem Formulation 
Let us consider a half-space with rapidly 

heated boundary. It is assumed that the initial 

conditions for temperature are uniform. Then 

the equations for corresponding initial-

boundary value problem of quasi-static 

thermoelasticity read [11], [26] 

heat conduction equation 
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boundary condition 

( ) ( )0,T t P t= . (5) 

Here ( )1,T x t  is the temperature, 

( )1 2 3, ,u u u u=
�

 is the displacement vector, ,λ µ  – 

Lame constants, 
ijδ  – Kronecker symbol, a  is 

the thermal diffusivity coefficient, 3 TKγ α= , 

Tα  is the linear expansion coefficient, K  is the 

bulk modulus, 
ijσ  is the components of stress, 

tα α∂ ∂  is the Caputo fractional derivative [14], 

xβ β∂ ∂  is the finite Riesz fractional 

derivative ([10], [27]), ( )P t  is the prescribed 

jump function. 

It is suitable to define the finite Riesz 

fractional derivative by following formula [27] 
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Within the framework of one-dimensional 

elasticity problem we have 
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Put into action the displacement potential 

( )1,x tΦ  [28]. Then from the equations (2), (3) 

we obtain 
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Thus, in order to derive the stresses in 

domain under consideration it is necessary to 

determine the temperature from the equation (1)

, initial conditions (4) and boundary conditions 

(5). 
 

 

3 Problem Solution 
3.1 Heat conduction equation 

The Laplace transform rule for the fractional 

Caputo derivative has the form [14] 
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By applying the Laplace transform to 

equation (1) and condition (5) under the 

assumption of initial conditions (4), we get the 

following boundary value problem 
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where ( ) ( ) ( )1 1, L[ , ]f x s f x t s= , L is the 

Laplace transform operator, defined by the 

integral 
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In order to obtain the sin -Fourier transform 
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for the finite Riesz derivative we write the 

following relations [10] 
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By applying the sin -Fourier transform to the 

formula (6) and taking into account (10), we 

obtain 

 
( )

( ) ( )1F F 0s s

x

x

β
β β

β

ϕ
ζ ζ ϕ ζ ϕ−

 ∂   = − +   ∂  
, 

1 2β< < . (11) 

Using the sin-Fourier transformation, 

relation (11) and boundary condition (9), 

equation (8) can be converted to the following 

form 
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In order to obtain desired temperature 

function it is necessary to apply the inverse 

operators 1Fs
− , 1L−  to the right-hand side of 

equation (12). 
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To invert the Laplace transform the 

following formula [13] is used 
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where ( ),E xα β
 is the generalized Mittag-

Leffler function [29]. 

Inverting the integral transforms in formula 

(12) according to relations (13), (14) we get 
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This expression gives the solution of the 

problem (1)-(5). The improper integral in the 

right-hand side of (15) converges, but its 

computation gives additional difficulties. The 

series representing function ( ),E a β α
α α

ζ τ− , is 

badly summarized for arguments of large 

magnitude. The fact of the matter is that every 

term of alternate series, which represent 

function ( ),E a β α
α α

ζ τ− , has a large magnitude 

whereas the value of Mittag-Leffler function 

(the sum of this series) is a small number. 

Similar problem appear during the numerical 

evaluation of the Wright function [30]. We used 

the algorithm for numerical evaluation of the 

Mittag-Leffler function presented in [18]. 

 

 

3.2 Numerical implementation 

Consider the half-space with rapidly heated 

boundary at initial time, that is 
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For numerical calculations we introduce the 

following nondimensional parameters: 
1

a
t
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σ
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where L  is the typical length scale, 0T  is the 

initial temperature. 

Distributions of nondimensional temperature 

θ  and stress 22Σ  are shown in Figures 1-5 for 

various values of α  and β . 

Temperature-time (or stress-time) 

dependence for 1.99β = , 1ξ =  is presented in 

fig. 1. Here the temperature is defined by its 

development during the all previous period of 

heat conduction. For small α  the temperature 

equilibrium is reached much faster then if 

2α → . In fig. 2 the temperature wave front 

when 2α →  and diffusion processes otherwise 

are observed. Li and Wang [31] established a 

connection between anomalous heat conduction 

and anomalous diffusion. It was shown that 

subdiffusion ( 0 1α< < ) implies an anomalous 

heat conduction with a convergent thermal 

conductivity, and superdiffusion (1 2α< < ) 

implies an anomalous heat conduction with a 

divergent thermal conductivity. When 1α =  

normal (classical) heat conduction occurs, 

prescribed by Fourier’s law. The same behavior 

of functions we can observe in figures 1, 2. 

Temperature (stress) distributions in time 

and space for various values of β  and 1α =  are 

shown in fig. 3, 4. Here is present the effect of 

spatial non-locality. That is the variation of 

temperature depends not only on its values in 

the neighbourhood of a selected point, but also 

on its values in remote points. Therefore, 

significant differences in temperature (stress) 

distribution take place only for large values of 

time or spatial variable. 

When 1α = , 2β =  equation (1) turn into 

the classical heat conduction equation, based on 

the Fourier’s law. Its solution under the initial 

conditions (4) and boundary condition (5), (16)

has the well-known form [28] 

 ( ) 1
1, erfc

2

x
T x t

at

  =    
, 0t > .  

In nondimensional variables 

 ( ), erfc
2

ξ
θ ξ τ

τ

 =    
. (17) 

This function is marked by squares in fig. 4. 

 

;

 

Fig. 1. Nondimensional temperature (stress) 

distribution in time at the point  1ξ =  for 

various values of α  ( 1,99β = ). 
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;

 

Fig. 2. Nondimensional temperature (stress) 

distribution in space for various values of α  and 

1τ = , ( 1,99β = ). 
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Fig. 3. Nondimensional temperature (stress) 

distribution in time at the point 1ξ =  for 

various values of β  ( )1α = . 

 

;

 

Fig. 4. Nondimensional temperature (stress) 

distribution in space for various values of β  and 

1τ =  ( )1α = . 

In the article [32] time-fractional equation 

with the zero initial conditions and the constant 

boundary value of a function is considered. This 

problem corresponds to the equation (1) with 

conditions (4), (5), (16) for 2β →  and L →∞ . 

The solution of a problem in such case is 

presented in fig. 5 for 0,5;1,0;1.5α =  and 

0.75τ = . These results are in good agreement 

with Povstenko's results. 
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Fig. 5. Nondimensional temperature distribution 

in space for various values of α  ( 0.75τ = ). 

 
 

 

4 Conclusion 
In this article we obtain the solution of the one-

dimensional boundary value problem for heat 

conduction equation with fractional Caputo and 

Riesz derivatives and corresponding quasi-static 

thermoelasticity problem. The solution satisfies the 

appropriate boundary conditions. In the limit case 

( 1α = , 2β → ) it coincides with the solution to the 

classical heat conduction equation. 
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